Abstract

Water activity (aw) and heating rate have shown important effects on the thermo-tolerance of pathogens in low moisture foods during thermal treatments. In this study, three strains were selected to compare the heat resistance in walnut shell powder and finally the most heat resistant S. aureus ATCC 25923 was chosen to investigate the influence of aw and heating rate using a heating block system (HBS). The results showed that S. aureus ATCC 25923 became more thermo-tolerant at lower aw. The D-values of S. aureus ATCC 25923 increased with decreasing water activity and heating rates (<1°C/min). A significant increase in heat resistance of S. aureus ATCC 25923 in walnut shell powder was observed only for the heating rates of 0.2 and 0.5°C/min but not at 1, 5 and 10°C/min. There was a rapid reduction of S. aureus ATCC 25923 at elevated temperatures from 26 to 56°C at a heating rate of 0.1°C/min. The inactivation under non-isothermal conditions was better fitted by Weibull distribution (R2=0.97 to 0.99) than first-order kinetics (R2=0.88 to 0.98). These results suggest that an appropriate increase in moisture content of in-shell walnuts and heating rate during thermal process can improve the inactivation efficiency of pathogens in low moisture foods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.