Abstract

The influence of the exposure of underlying dielectric (phophosilicate glass and borophosphosilicate glass) films to a humid air ambient on crystallographic orientations in Al–Si–Cu/Ti/TiN/Ti layered structures has been investigated as a function of the boron content and exposure time of the dielectric films. The Al(111) orientation in the layered structures was found to improve drastically with increasing boron content and exposure time of the dielectric films. The full width at half maximum value of an Al(111) x-ray rocking curve reached less than 1°. It was also found that the Al–Si–Cu surface becomes smoother and the average grain size increases as the Al(111) orientation improves. The improved Al(111) orientation was attributed to the improved Ti(002) orientation of the bottom Ti films. The mechanism of the improved Ti(002) orientation was investigated. It was confirmed that the improved orientation is closely related with the surface concentration of the absorbed water in the dielectric films. Further, it was demonstrated that interconnects fabricated from the improved layered structure have excellent electromigration performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.