Abstract
Abstract Roller-compacted concrete pavement (RCCP) is one of the most durable, economical, and practical solutions for the construction of roads for various heavy-duty purposes. To make RCCP more sustainable, different waste materials have been utilized. These materials were densified silica fume (SF), ground granulated blast furnace slag (S), crumb rubber (CR), and recycled steel fibers (RSFs) from waste tires. The weight percentages of replacement for SF and S from cement were 5, and 27.5%, respectively. CR was utilized as a volumetric replacement of sand with 0, 2, 5, and 10%. As a volumetric addition of concrete, RSF with 0.2, 0.4, and 0.6% was utilized. Water content was 6% for all mixtures. The impact resistance test was performed to evaluate the behavior of RCCP to the repeated load on roads. Also, ultrasonic pulse velocity (UPV) (nondestructive) and abrasion resistance tests were performed to validate roller-compacted concrete (RCC) as pavement. There is a substantial increase in impact energy by using 10% of CR and 0.6% of RSF, compared with that of reference specimens. The use of CR and RSF can improve the abrasion resistance of RCC, and this can ensure its applications in pavements. The relationships between impact, abrasion, and UPV were established, and models have been proposed to predict these relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.