Abstract
The instability of the Mack mode is destabilized by wall-cooling in a high speed boundary layer. The aim of this paper is to study the mechanism of the wall-cooling effect on the Mack mode instability by numerical methods. It is shown that the wall-cooling can destabilize the Mack mode instability, similar to the previous conclusions with the exception that the Mack mode instability can be stabilized by wall-cooling if the wall temperature is extremely low. The reversed wall temperature is related to a freestream condition. If the Mach number increases to a large enough value, e.g., about 7, the reversed wall temperature will tend to be zero. It seems that the Mack mode instability is determined by the region between the boundary layer edge and the critical layer. When the wall temperature decreases, this region becomes wider, and the boundary layer becomes more unstable. Additionally, a relative supersonic unstable mode can be observed when the velocity of the critical layer is less than 1 − 1/Ma or is cancelled by the wall-cooling effect. These results provide a deeper understanding on the wall-cooling effect in high speed boundary layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.