Abstract

Effect of glass microballoon (GMB) wall thickness and cutting parameters (cutting speed, feed and drill diameter) on thrust force (Ft), surface roughness (Ra), specific cutting coefficient (Kf), cylindricity (CYL), circularity error (Ce-Exit) and damage factor (Fd-Exit) in drilling of GMB/epoxy syntactic foam is presented. CNC vertical machining centre is utilised for conducting experiments based on full factorial design. Significant process parameters are identified through response surface methodology. Wall thickness significantly affects the Ce-Exit and CYL of the drilled hole. Increasing wall thickness significantly reduces the Ra (30%), CYL (41%) and Ce-Exit (56%) due to the increased thermal stability of syntactic foams. This observation is very crucial for the syntactic foams used in structural applications pertaining to structural stability. Drill diameter is observed to be significant for Ft, Ra, CYL and Fd-Exit; while Kf is governed by feed. Furthermore, grey relation analysis (GRA) is used to identify the specific combination of process parameters to obtain good quality drilled hole. Combination of higher particle wall thickness and feed, lower cutting speed and drill diameter produces a sound hole quality as observed from GRA. Hole quality is highly influenced by drill diameter followed by cutting speed and GMB wall thickness. The present study offers guidelines for the industries (structural applications) to produce quality holes in GMB reinforced epoxy matrix.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call