Abstract

Measurement of mean flow profiles in a fully developed Mach 3 turbulent boundary layer with negligible pressure gradient is reported. Data were acquired at several streamwise locations for wall-to-total temperature ratios of 0.94, 0.71, and 0.54. The results demonstrate that the velocity defect formulation of the law-of-the-wake, which successfully correlates compressible, adiabatic boundary layers, is also valid for nonadiabatic flows. It is also shown that for adiabatic walls, the linear Crocco relation between total temperature and velocity does not provide a valid test of the nature of the boundary-layer flow for practical cases where the Prandtl number departs from unity. Finally, the turbulent shear stress, mixing length, and eddy viscosity were extracted from the 'time-averaged' conservation equations using the measured mean flow profiles and found to be insensitive to wall temperature. In particular, the latter properties are in good agreement with earlier compressible, adiabatic correlations of turbulent transport properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.