Abstract
Velocity oscillations at the head of the gravity current were investigated in experiments and numerical simulations of a locked-exchange flow. A comparison of the experimental and numerical simulations showed that the depth and volume of the released fluid affected the oscillations in the velocity of the gravity current. At the initial stage, the head moved forward at a constant velocity, and velocity oscillations occurred. The head maximum thickness increased at the same time as the head, which did not have a round, and accumulated buoyant fluid due to the buoyancy effect intrusion force. The period of accumulation and release of the buoyant fluid was almost the same as that observed for the head movement velocity; the head movement velocity was faster when the buoyant fluid accumulated and slower when it was released. At the viscous stage, the forward velocity decreased proportionally to the power of 1/2 of time, since the head was not disturbed from behind. As the mass concentration at the head decreased, the gravity current was slowed by the viscous stage in its effect. At the viscous stage, the mass concentration at the head was no longer present, and the velocity oscillations also decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.