Abstract

This paper presents a numerical study of the effect of peripheral wall conduction on combined free and forced laminar convection in hydrodynamically and thermally fully developed flow in horizontal rectangular channels with uniform heat input axially, In addition to the Prandtl number, the Grashof number Gr+, and the aspect ratio γ, a parameter Kp indicating the significance of wall conduction plays an important role in heat transfer. A finite-difference method utilizing a power-law scheme is employed to solve the system of governing partial differential equations coupled with the equation for wall conduction. The numerical solution covers the parameters: Pr = 7.2 and 0.73, γ = 0.5, 1, and 2, Kp = 10−4–104, and Gr+ = 0–1.37×105. The flow patterns and isotherms, the wall temperature distribution, the friction factor, and the Nusselt number are presented. The results show a significant effect of the conduction parameter Kp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call