Abstract

This study investigates the effect of wakes in the presence of varying levels of background freestream turbulence on the heat (mass) transfer from gas turbine blades. Measurements using the naphthalene sublimation technique provide local values of the mass transfer coefficient on the pressure and suction surfaces of a simulated turbine blade in a linear cascade. Experimental parameters studied include the pitch of the wake-generating blades (vanes), blade-row separation, Reynolds number and the freestream turbulence level. The disturbed flow strongly affects the mass transfer Stanton number on both sides of the blade, particularly along the suction surface. An earlier transition to a turbulent boundary layer occurs with increased background turbulence, higher Reynolds number and from wakes shed from vanes placed upstream of the linear cascade. Note that once the effects on mass transfer are known, similar variation on heat transfer can be inferred from the heat/mass transfer analogy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.