Abstract

Residual stress conditions in GaN-based LEDs will have a significant influence on device performance and reliability. In this paper, GaN-based vertical LEDs under different stress conditions are fabricated by bonding with three types of submounts (Al2O3 submount, CuW submount and Si submount), changing the soak temperature (290 ℃, 320 ℃, 350 ℃ and 380 ℃) and using different laser energy densities (875, 945 and 1015 mJ·cm-2). The warpage and Raman scattering spectra of those GaN-based LEDs are measured. The experimental results show that the residual stress conditions in GaN-based vertical LEDs are a consequence of the bonded submounts and bonded metal, and the soak temperature is the primary factor that determines the degree of residual stress in LED chips. In the laser lift-off process, changing laser energy density in an appropriate range has little influence on residual strain of LED chips, and the micro-cracks in GaN layer caused by LLO process will play a role in releasing the residual stress. The warpage of epitaxial sapphire substrate becomes large after boding with Si submount, the residual stress in GaN-based vertical LEDs is tensile stress and becomes larger with the soak temperature rising. When GaN epi wafer bonds with Al2O3 submount and CuW submount, the warpages becomes small and large respectively and the residual stress in chips is compressive stress. Because of the mismatch of coefficient of thermal expansion, the compressive stress in GaN-based LED chips increases for Al2O3 submount and drops for CuW submount with the soak temperature rising.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call