Abstract

The effect of vulcanization system on the properties of polymer-elastomer composite materials based on nitrile-butadiene rubber and ultrahigh molecular weight polyethylene is studied. An analysis of the rheometric and vulcanization characteristics of rubber compounds shows that, in the case of combined sulfur-peroxide vulcanization system, the crosslinking density of vulcanizates increases considerably. The study of the elastic and strength behavior and dynamic mechanical properties of the vulcanizates demonstrates that the sulfur-peroxide vulcanization system provides the best parameters, in particular at low temperatures. An examination of elastic and hysteresis properties of the samples before and after vulcanization, which are measured under dynamic loading in a wide frequency and strain range, allows one to describe the features of physicochemical interactions in polymer-elastomer materials depending on the used vulcanization system. The supramolecular structure of the vulcanizates is visualized by scanning electron microscopy, and chemical interaction between macromolecules of nitrile-butadiene rubber and ultrahigh molecular weight polyethylene occurring during peroxide vulcanization is proved by IR spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call