Abstract
The effect of vulcanization processes and surface treatment of cellulose were investigated on tensile strength, degradation temperature, and morphological properties of cellulose/natural rubber composites. Cellulose was surface-treated with Si-69 silane coupling agent and used as reinforcing filler in natural rubber (NR). Different vulcanization processes including electron beam irradiation (EB-Cured) and sulphur vulcanization (S-Cured) were used to crosslink NR. The incorporation of both untreated and treated cellulose at various concentrations (5, 10, 15 and 20 phr) into NR was found to significantly improve the tensile strength and modulus. Notably, with addition of treated cellulose in NR, the tensile strength and modulus were considerably higher than that of the untreated cellulose for all curing system. SEM morphological analysis revealed a well dispersion of cellulose particles in NR matrix. Addition of cellulose slightly decreased the onset of degradation temperature of NR, however, the degradable temperature was found to be unchanged. The curing systems had shown an impact on tensile property of NR. S-Cured NR exhibited highest modulus of 2.23 MPa comparing to the EB-Cured NR (1.69 MPa) for the same amount of cellulose (20 phr), due to a stronger crosslink network. However, the curing system had no significant impact on degradation temperature of NR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.