Abstract

Cobalt molybdenum carbide supported on activated carbon was synthesized and the effect of sulfiding on the catalytic activity of the glycerol trioleate deoxygenation process (DOX) was evaluated. Prior to the glycerol trioleate deoxygenation reactions, the catalyst was reduced and sulfided with CS2/H2. The CoMo/CA carbide was characterized by specific area (B.E.T), X-ray diffraction (XRD), elemental analysis (CHON-S), potentiometric titration with n-butylamine and X-ray photoelectron spectroscopy (XPS). The specific area of the CoMo/CA carbide and the support were 246 m2/g and 881 m2/g, respectively. XRD analysis proved the presence of Co6Mo6C2 and metallic cobalt. XPS showed the presence on the surface of signals assignable to Moδ+, Mo4+, Mo6+, Co2+, S2– and SO42–. Sulfided CoMo/CA carbide showed higher activad to glycerol trioleate esoxygenation than unsulfided CoMo/CA carbide. The highest yield was obtained at 310 °C, 900 psi H2 and 2 h of reaction (100% conversion) and a higher selectivity towards heptadecane (55%) and octadecane (45%) favoring decarboxylation (HDCX) and decarbonylation (HDCn) than hydrodeoxygenation (HDO).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call