Abstract

The influence of vorticity on second- and third-order moments of the spatial derivatives of a forced, passive scalar field has been studied in the framework of a simplified problem; the analysis is restricted to dominating rotation and molecular diffusion is represented by a linear model. The results reveal that, in the case of a passive scalar experiencing forcing in an isotropic medium, both vorticity and diffusion counteract anisotropy imposed on the scalar field. Anisotropy at the level of second-order moments appears to be destroyed essentially by the action of vorticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.