Abstract

AbstractFor especially highly concentrated suspensions, slip at the wall is the controlling phenomenon of their rheological behavior. Upon correction for slip at the wall, concentrated suspensions were observed to have non‐Newtonian behavior. In this study, to determine the true rheological behavior of model concentrated suspensions, “multiple gap separation method” was applied using a parallel‐disk rheometer. The model suspensions studied were polymethyl methacrylate particles having average particle sizes, in the range of 37–231 μm, in hydroxyl terminated polybutadiene. The effects of particle size and solid particle volume fraction on the wall slip and the true viscosity of model concentrated suspensions were investigated. It is observed that, as the volume fraction of particles increased, the wall slip velocity and the viscosity corrected for slip effects also increased. In addition, for model suspensions in which the solid volume fraction was ≥81% of the maximum packing fraction, non‐Newtonian behavior was observed upon wall slip correction. On the other hand, as the particle size increased, the wall slip velocity was observed to increase and the true viscosity was observed to decrease. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 439–448, 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.