Abstract

In order to improve the high-temperature oxidation resistance of refractory high-entropy alloys (RHEAs), we used micro-arc oxidation (MAO) technology to prepare ceramic coatings on AlTiCrVZr alloy, and the effects of voltage on the microstructure and high-temperature oxidation resistance of the coatings were studied. In this paper, the MAO voltage was adjusted to 360 V, 390 V, 420 V, and 450 V. The microstructure, elements distribution, chemical composition, and surface roughness of the coatings were studied by scanning electron microscopy (SEM), energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS), and white-light interferometry. The matrix alloy and MAO-coated samples were oxidized at 800 °C for 5 h and 20 h to study their high-temperature oxidation resistance. The results showed that as the voltage increased, the MAO coating gradually became smooth and dense, the surface roughness decreased, and the coating thickness increased. The substrate elements and solute ions in the electrolyte participated in the coating formation reaction, and the coating composition was dominated by Al2O3, TiO2, Cr2O3, V2O5, ZrO2, and SiO2. Compared with the substrate alloy, the high-temperature oxidation resistance of the MAO-coated samples prepared at different voltages was improved after oxidation at 800 °C, and the coating prepared at 420 V showed the best high-temperature oxidation resistance after oxidation for 20 h. In short, MAO coatings can prevent the diffusion of O elements into the substrate and the volatilization of V2O5, which improves the high-temperature oxidation resistance of AlTiCrVZr RHEAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.