Abstract
The effect of volatile boron species on the microstructure and electrocatalytic activity of conventional (La,Sr)MnO3 (LSM) and nano-structured LSM infiltrated Y2O3-ZrO2 (LSM-YSZ) cathodes of solid oxide fuel cell (SOFC) is studied. The cathodes were heat-treated at 700–800°C in air for 7–30 days in the presence of borosilicate glass powder. Compared to freshly-prepared cathodes, heat-treatment in the presence of glass improves the electrocatalytic activity of LSM cathodes, but has a significant detrimental effect on the microstructure and electrochemical activity of nano-structured LSM-YSZ cathodes. Present study shows that boron is not chemically compatible with LSM and poisoning effect of boron is related to the size of LSM particles. Interaction between volatile boron species and nano-sized LSM leads to the decomposition of LSM perovskite structure and the significant degradation of the electrocatalytic activity of the electrodes. In the case of conventional LSM, the reaction between boron and LSM occurs primarily on the surface. The agglomeration of LaBO3 and formation of nonstoichiometry thin surface may be beneficial to the removal of the segregated species on the LSM surface and thus improves the performance. A reaction mechanism between volatile boron species and LSM electrodes is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.