Abstract

Supplying adequate iron (Fe) to neonatal pigs to support normal growth and hematological and antioxidant status, while preventing iron toxicity, is a challenge for producers. Three experiments were conducted to determine the effect of frequency and route of Fe administration with or without vitamin E (E) and selenium (Se) on growth, Fe, and antioxidant status of neonatal pigs. In Exp. 1, 12 pigs from dams with reduced E status were fed a semipurified diet without added Fe from d 3 to d 14 of age. At d 6 of age, pigs received the following i.m. injections: 1) FE, 1 mL containing 200 mg of Fe (iron dextran); 2) FEE, treatment FE plus 1 mL containing 300 IU of vitamin E (d-alpha tocopherol); or 3) FESEE, 1.03 mL containing 200 mg of Fe (iron dextran), .15 mg of Se (sodium selenite), and 15 IU of vitamin E (d-alpha tocopherol). Pigs were weighed daily and blood was collected at 3, 7, and 14 d of age. From d 8 to 14, growth was depressed (P < .05) in pigs injected with FESEE. At 14 d of age, pigs injected with FE or FEE had increased (P < .05) hemoglobin (Hb) concentration. Ceruloplasmin activity (CP) was greater (P < .05) at d 7 of age than at d 3 or 14 regardless of treatment. In Exp. 2, 3-d-old pigs (n = 94) received the following: 1) FE, 200 mg Fe (iron dextran) i.m.; (2) FEE, treatment FE plus 300 IU vitamin E i.m.; 3) EFE, 300 IU vitamin E i.m. followed by 200 mg Fe (iron dextran) i.m. 24 h later; or 4) OFE, 100 mg Fe and 10 mg Cu orally. On d 21 of age, one-half of the pigs in each treatment received a second dose of their respective treatment. Blood samples (n = 60) were obtained on d 3 and 21 of age. Pigs injected with FE, FEE, or EFE had greater (P < .05) Hb at d 21 than pigs given OFE. Copper/zinc superoxide dismutase (Cu/ZnSOD) activity was greater (P < .05) at d 21 with OFE than with the other treatments. At 65 d of age, ADG did not differ among treatments. In Exp. 3, pigs (n = 150, in three farrowing groups) were injected with 200 mg of Fe (iron dextran) on d 1 or d 1 and 14. Blood samples were obtained on d 7 and 21 of age. Hemoglobin concentration on d 21 was improved equally by both treatments. Catalase and Cu/ZnSOD activities were increased (P < .05) on d 21 of the experiment compared with d 7 regardless of treatment. Growth was not affected by injection frequency. Results from these experiments indicate that one Fe injection (200 mg) for pigs from sows fed adequate vitamin E will result in adequate growth and hemoglobin concentration with today's improved genetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call