Abstract

We estimate our hand's position by combining relevant visual and proprioceptive cues. A cross-sensory spatial mismatch can be created by viewing the hand through a prism or, more recently, rotating a visual cursor that represents hand position. This is often done in the context of target-directed reaching to study motor adaptation, the systematic updating of motor commands in response to a systematic movement error. However, a visuo-proprioceptive mismatch also elicits recalibration in the relationship between the hand's seen and felt position. The principles governing visuo-proprioceptive recalibration are poorly understood, compared to motor adaptation. For example, motor adaptation occurs robustly whether the cursor is rotated quickly or slowly, although the former may involve more explicit processes. Here, we asked whether visuo-proprioceptive recalibration, in the absence of motor adaptation, works the same way. Three groups experienced a 70mm visuo-proprioceptive mismatch about their hand at a Slow, Medium, or Fast rate (0.84, 1.67, or 3.34mm every two trials, respectively), with no error feedback. Once attained, the 70mm mismatch was maintained for the remaining trials. Total recalibration differed significantly across groups, with the Fast, Medium, and Slow groups recalibrating 63.7, 56.3, and 42.8mm on average, respectively. This suggests a slower mismatch rate may be less effective at eliciting recalibration. In contrast to motor adaptation studies, no further recalibration was observed in the maintenance phase. This may be related to the distinct mechanisms thought to contribute to perceptual recalibration via cross-sensory cue conflict versus sensory prediction errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call