Abstract

Previous researches state vision as a vital source of information for movement control and more precisely for accurate hand movement. Further, fine bimanual motor activity may be associated with various oscillatory activities within distinct brain areas and inter-hemispheric interactions. However, neural coordination among the distinct brain areas responsible to enhance motor accuracy is still not adequate. In the current study, we investigated task-dependent modulation by simultaneously measuring high time resolution electroencephalogram (EEG), electromyogram (EMG) and force along with bi-manual and unimanual motor tasks. The errors were controlled using visual feedback. To complete the unimanual tasks, the participant was asked to grip the strain gauge using the index finger and thumb of the right hand thereby exerting force on the connected visual feedback system. Whereas the bi-manual task involved finger abduction of the left index finger in two contractions along with visual feedback system and at the same time the right hand gripped using definite force on two conditions that whether visual feedback existed or not for the right hand. Primarily, the existence of visual feedback for the right hand significantly decreased brain network global and local efficiency in theta and alpha bands when compared with the elimination of visual feedback using twenty participants. Brain network activity in theta and alpha bands coordinates to facilitate fine hand movement. The findings may provide new neurological insight on virtual reality auxiliary equipment and participants with neurological disorders that cause movement errors requiring accurate motor training. The current study investigates task-dependent modulation by simultaneously measuring high time resolution electroencephalogram, electromyogram and force along with bi-manual and unimanual motor tasks. The findings show that visual feedback for right hand decreases the force root mean square error of right hand. Visual feedback for right hand decreases local and global efficiency of brain network in theta and alpha bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call