Abstract

In this study, the effect of magnetic field, viscous dissipation, nonuniform heat source, and/or sink and thermal radiation on flow and heat transfer in a hydromagnetic liquid film over an unsteady stretching sheet with prescribed heat flux condition is investigated. The governing equations are transformed into a set of ordinary differential equations with six free parameters by using a similarity transformation before being solved numerically. The temperature profiles depending on the governing parameters are displayed in graphical form and the relevant thermal characteristics are depicted in tabular representation. It is found that the dimensionless temperature profile, sheet temperature, and free surface temperature, with a specific unsteadiness parameter, are enhanced as the increase in magnetic parameter, Eckert number, space- and temperature-dependent parameters, and they are reduced for increasing effective Prandtl number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.