Abstract
One of the current trends of the modern biology figures out cellular enzyme behaviour. Numerous researches look more closely at the chemical composition of creating in vivo simulated media conditions. The aim of this work was to find out a thermodynamic cooperativity of enzymes in a triple-enzyme chain (lactate dehydrogenase + NAD(P)H: FMN-oxidoreductase + bacterial luciferase) under in vivo simulated condition. The thermodynamic cooperativity effects were found out based on the influence of the viscogens (glycerol and sucrose) on the thermal stability of the triple-enzyme system. The results showed that the viscogens do not lead to an increase in the thermal stability of the triple-enzyme system. In addition, organic solvents (sucrose and glycerol) added as viscous agents to the reaction medium altered the kinetics of this triple-enzyme chain, including changing the light emission decay constant (kdec) and quantum yield of luminescence (Q). Plus, sucrose was found to be more efficient in limiting the flexibility of enzymes than glycerol. The high sensitivity of the triple-enzyme system to the viscogens may be connected with a fact that lactate dehydrogenase does not bound with couple enzyme system NAD(P)H: FMN-oxidoreductase + bacterial luciferase inside the real cell. Since this approach may be used as a method to understand the real connection between enzymes in cellular multi-enzyme metabolic chains inside the luminous bacteria cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.