Abstract

The kinetics of photopolymerization of compositions based on dimethacrylate oligomers with viscosities ranging from 1.5 to 376.7 cSt under the action of visible light (9,10-phenanthrenquinone and a mixture of 3,6-di-tert-butyl-1,2-benzoquinone with N,N-dimethylcyclohexylamine as initiators) is studied. Dimethacrylates of poly(ethylene glycols) with the number of ethoxy fragments of n = 1–4 and 8, dimethacrylates of OKM-2 and MDF-2 trademarks, and solvents (benzene, acetonitrile, and dinonyl ester of phthalic acid) are used. At the initial stages of the reaction, the dependence of the reduced rate of photopolymerization of such compositions on their initial viscosity is described by a curve attaining a plateau at a viscosity of 100 cSt or above. The dependences of viscosity of all dimethacrylates on temperature ranging from –10 to +80°С are determined, the effective activation energies of monomer viscous flow are calculated, and the temperature dependences of the number of molecules in associates for each of the oligomers are ascertained. At Т = 20°С, the number of molecules in the associates of poly(ethylene glycol) dimethacrylates with n = 1–4 does not exceed 10, for n = 8 the number of molecules in the associates is ∼102, and for dimethacrylates of OKM-2 and MDF-2 trademarks this value is above 104.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call