Abstract

AbstractSolvent formulation is important in the optimization of the mass-transfer through supported liquid membranes (SLM) in pertraction and membrane extraction. Oleyl alcohol (OA) is frequently used as the solvent or diluent in the extraction of carboxylic acids. A disadvantage of OA is its relatively high viscosity of 28.32 mPa s at 25°C. This can be decreased by the application of a less viscous OA diluent, e.g. dodecane. The relationship between the ratio of the distribution coefficient of butyric acid (BA), D F, and the viscosity of OA-dodecane solvents, µ, as extraction and transport characteristics, and the overall mass-transfer coefficient, K p, through SLMs was analyzed. Dependence of the D F/µ ratio on the OA concentration showed a maximum at the OA concentration of 15 mass % to 30 mass %. The OA concentration dependence of K p for SLMs exhibited also a maximum at about 30 mass % and 20 mass % of OA at the BA concentration driving force of 0.12 kmol m−3 and 0.3 kmol m−3, respectively. Shifting of the maximum in K p dependences towards lower OA concentrations by increasing the BA concentration driving force is in agreement with the D F/µ ratio dependence. Using pure OA as the solvent or diluent is not preferable and a mixture of a low viscosity diluent with the OA concentration below 40 mass % should be used. The presented results show the potential of the D F/µ ratio in the screening and formulation of solvents in extraction and SLM optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call