Abstract

Experiments were conducted to measure the performance of direct-current-pulsed electrohydrodynamic drop formation as a function of liquid viscosity, electrical conductivity, and surface tension. While hydrodynamic and charge relaxation times and Taylor cone formation frequencies suggest theoretical drop-generation frequencies well in excess of 100 Hz, we show that it is impossible to produce more than 50 drops per second with performance decreasing as viscosity increased or electrical conductivity decreased (and not a significant function of surface tension). Instead of relying on relaxation-time calculations to predict the maximum, reliable drop-production frequency, a dimensionless coefficient that is a function of viscosity and electrical conductivity is proposed to estimate the fulcrum frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.