Abstract
The effect of viscoelastic forces on the hole growth speed in a liquid curtain and on the critical flow rate below which a liquid curtain breaks was studied by high-speed visualization. Different Boger-like aqueous solutions were used as the viscoelastic liquids. The expansion of a hole initiated within the liquid curtain leads to the curtain breakup. The results show a strong stabilizing effect of the viscoelastic forces; the minimum flow rate for stable curtain falls drastically by adding small amounts of high molecular weight polymer. The results reveal that the mechanisms for the increased stability are that the initiation of the hole is delayed and the speed at which it expands is also reduced, as the viscoelastic forces become stronger.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.