Abstract

Composites of jute fabrics (Hessian cloth) and Biopol® were prepared by compression molding process. Three types of Biopol® (3-hydroxbutyrate- co-3-hydroxyvalarate) such as D300G, D400G and D600G, depending on the concentration of 3-hydroxyvalarate (3HV) in 3-hydroxbutyrate (3HB) were taken for this purpose. Mechanical properties such as tensile strength (TS), bending strength (BS), elongation at break (Eb) and impact strength (IS) of the jute-Biopol® composites were studied. It was found that the composite with D400G produced higher mechanical properties in comparison to the other two types of Biopol®. To increase mechanical properties as well as interfacial adhesion between fiber and matrix, 2-ethyl hydroxy acrylate (EHA), vinyl tri-methoxy silane (VMS) and 3-methacryloxypropyl tri-methoxy silane (MPS) were taken as coupling agents. Enhanced mechanical properties of the composites were obtained by using these coupling agents. Biopol® D400G composites showed the highest mechanical properties. Among the coupling agents EHA depicts the highest increase of mechanical properties such as tensile strength (80%), bending strength (81%), elongation at break (33%) and impact strength (130%) compared pure Biopol. SEM investigations demonstrate that the coupling agents improve the interfacial adhesion between fiber and matrix. The surface of the silanized jute was characterized by FTIR and found the deposition of silane on jute fiber was observed. Soil degradation test proved that the composite prepared with EHA treated jute exhibits better degradation properties in comparison to pure Biopol®.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.