Abstract

Ethylene vinyl acetate copolymer (EVA) flame retarded by ammonium polyphosphate (APP) and pentaerythritol (PER) was cross-linked by electron beam irradiation. The effects of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of EVA composites were investigated. The volatilized products of EVA/APP/PER composites were characterized by thermogravimetric analysis/infrared spectrometry. As VA content increased, the volatilized products increased in the second decomposition step, but decreased in the third decomposition step. For all samples, the increase of irradiation dose could improve both the gel content and the Limit Oxygen Index (LOI, the minimum oxygen concentration by volume for maintaining the burning of a material) values of irradiated composites. The mechanical and thermal properties of the irradiated EVA composites were also evidently improved at appropriate irradiation dose as compared with those of unirradiated EVA composites, whereas these properties decrease at higher irradiation dose because of the electron beam irradiation-induced oxidative degradation or chain scission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call