Abstract

The design of surgical needles used in biopsy procedures have remained fairly standard despite the increase in complexity of surgeries. Higher needle insertion forces and deflection can increase tissue damage and decrease biopsy sample integrity. To overcome these drawbacks, we present a novel bioinspired approach to reduce insertion forces and minimize needle-tip deflection. It is well known from the literature, design of bioinspired surgical needles results in decreasing insertion forces and needle-tip deflection from the needle insertion path. This technical note studies the influence of vibration on bioinspired needle to further reduce insertion forces and needle-tip deflection. Bioinspired needle geometrical parameters such as barb shapes and geometries were analyzed to determine the best design parameters. Static and dynamic (vibration) needle insertion tests were performed to determine the maximum insertion forces and to estimate needle-tip deflection. Our results show that introducing vibration on the bioinspired needle insertion can reduce the maximum insertion force by up to 50%. It was also found that the needle-tip deflection is decreased by 47%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call