Abstract
The role of vesicle-to-micelle transition has been investigated in the interactions of phospholipid vesicles, phospholipid/sodium cholate (NaC) mixed vesicles, and phospholipid/NaC mixed micelles with curcumin in aqueous solution. The addition of NaC causes phospholipid vesicles to transit into phospholipid/NaC mixed vesicles and phospholipid/NaC mixed micelles. Turbidity measurement reveals that the presence of curcumin increases the NaC concentration for the solubilization of phospholipid vesicles, which indicates that the bound curcumin tends to suppress the vesicle-to-micelle transition. The pyrene polarity index and curcumin fluorescence anisotropy measurements suggest that phospholipid/NaC mixed micelles have a more compact structure than that of phospholipid vesicles and phospholipid/NaC mixed vesicles. Curcumin associated with phospholipid vesicles, phospholipid/NaC mixed vesicles, and phospholipid/NaC mixed micelles often results in higher intensities of absorption and fluorescence than those of free curcumin. However, phospholipid/NaC mixed vesicles lead to the highest values of absorption and fluorescence intensities, binding constant, and radical-scavenging capacity with curcumin. The different structures in the phospholipid bilayer of phospholipid/NaC mixed vesicles and the hydrophobic part of phospholipid/NaC mixed micelles where curcumin located are discussed to explain the interaction behaviors of phospholipid/NaC mixed systems with curcumin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.