Abstract

This paper presents three dimensional (3D) simulation of flow visualization in the encapsulation of stacked-chip scales packages (S-CSP), using finite volume method. The S-CSP model is constructed using GAMBIT and simulated using FLUENT CFD software. The epoxy molding compound is Hitachi CEL-9200 XU (LF) and its flow is assumed laminar and incompressible. Cross viscosity model and volume of fluid technique are applied for flow front tracking of the encapsulant. The meshing is performed using tetrahedral elements and the discretization is done by first order upwind scheme. SIMPLE algorithm is selected for solving the governing equations. The top view and 3D view of simulation flow front profiles in the encapsulation process are presented. The percentage of filled volume versus filling time, viscosity versus shear rate and number of voids versus rows of stacked die are plotted. The temperature and pressure distributions within the mold cavity during the encapsulation process are also observed. Further, the possibility and cause of void formation during the encapsulation process are analyzed and discussed in detail. The number of vertical stacking dies and horizontal rows of packages are found to be crucial in the void formation. The numerical results are compared with previous experimental results and found in good conformity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call