Abstract

Several drugs used in the treatment of chronic peripheral ischaemic and venous diseases, i.e. aescine, Cyclo 3, Ginkor Fort, hydroxyethylrutosides, naftidrofuryl, naphthoquinone and procyanidolic oligomers, were tested on the mitochondrial respiratory activity. The results show that all these drugs protected human endothelial cells against the hypoxia-induced decrease in ATP content. In addition, they all induced a concentration-dependent increase in respiratory control ratio (RCR) of liver mitochondria pre-incubated with the drugs for 60 min. The drugs were divided into two groups according to their effects. The first group (A), comprising aescine, Ginkor Fort, naftidrofuryl and naphthoquinone, increased RCR by decreasing state 4 respiration rate. The second group of drugs (B), comprising hydroxyethylrutosides, procyanidolic oligomers and Cyclo 3, increased RCR by increasing state 3 respiration rate. The drugs of group A were able to prevent the inhibition of complexes I and III respectively by amytal and antimycin A while the first two drugs of group B increased adenine nucleotide translocase activity. Cyclo 3 inhibited the carbonylcyanide m-chlorophenyl hydrazone (mCCP)-induced uncoupling of mitochondrial respiration. None of these seven drugs could protect complexes IV and V, respectively, from inhibition by cyanide and oligomycin. When tested on endothelial cells the drugs of group A, in contrast to group B, prevented the decrease in ATP content induced by amytal or antimycin A. The present results suggest that the protective effects on mitochondrial respiration activity by these venotropic drugs may explain their protective effect on the cellular ATP content in ischaemic conditions and some of their beneficial therapeutic effect in chronic vascular diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call