Abstract

PurposeThis study aimed to investigate the effects of lower-extremity cannulation on the intra-arterial hemodynamic environment, oxygen content, blood damage, and thrombosis risk under different levels of veno-arterial (V-A) ECMO support. MethodsComputational fluid dynamics methods were used to investigate the effects of different levels of ECMO support (ECMO flow ratios supplying oxygen-rich blood 100–40 %). Flow rates and oxygen content in each arterial branch were used to determine organ perfusion. A new thrombosis model considering platelet activation and deposition was proposed to determine the platelet activation and thrombosis risk at different levels of ECMO support. A red blood cell damage model was used to explore the risk of hemolysis. ResultsOur study found that partial recovery of cardiac function improved the intra-arterial hemodynamic environment, with reduced impingement of the intra-arterial flow field by high-velocity blood flow from the cannula, a flow rate per unit time into each arterial branch closer to physiological levels, and improved perfusion in the lower extremities. Partial recovery of cardiac function helps reduce intra-arterial high shear stress and residence time, thereby reducing blood damage. The overall level of hemolysis and platelet activation in the aorta decreased with the gradual recovery of cardiac contraction function. The areas at high risk of thrombosis under V-A ECMO femoral cannulation support were the aortic root and the area distal to the cannula, which moved to the descending aorta when cardiac function recovered to 40–60 %. However, with the recovery of cardiac contraction function, hypoxic blood pumped by the heart is insufficient in supplying oxygen to the front of the aortic arch, which may result in upper extremity hypoxia. ConclusionWe developed a thrombosis risk prediction model applicable to ECMO cannulation and validated the model accuracy using clinical data. Partial recovery of cardiac function contributed to an improvement in the aortic hemodynamic environment and a reduction in the risk of blood damage; however, there is a potential risk of insufficient perfusion of oxygen-rich blood to organs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call