Abstract

A linear analysis method has been used to investigate the instability behavior of the viscoelastic liquid sheets moving in the surrounding ambient gas. The gas boundary layer thickness and the liquid sheet velocity profile were taken into account. The effects of gas and liquid viscosity on the growth rate were revealed. The governing equations were obtained through analysis of the liquid and gas domain and solved using the spectral method. The viscoelastic rheological parameters and some flow parameters have been tested to investigate their influences on the instability of the viscoelastic liquid sheets. The results reveal that the disturbances grow faster for the viscoelastic liquid sheet than Newtonian one with identical viscosity. Moreover, the increases of Weber number, elasticity number, gas Reynolds number, and momentum flux ratio can accelerate the breakup of the viscoelastic liquid sheet. However, the increases of time constant ratio, boundary layer thickness, and liquid Reynolds number have the opposite effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call