Abstract

Fluid dynamic forces were found to significantly affect the ability of freshwater dreissenid mussels (Dreissena polymorpha and Dreissena bugensis) to clear plankton. Tests conducted in a flow chamber at <1 cm·s-1were consistent with published clearance rates from standard tests involving unstirred containers (i.e., 60-70 mL· mussel-1·h-1for 11-mm-long mussels). Increasing ambient velocity up to ~10 cm·s-1led to clearance rates at least twice those of standard testing methods. Higher velocities (~20 cm·s-1) were inhibitory and resulted in reduced clearance rates. There were no detectable differences in the clearance rates of D. polymorpha and D. bugensis of equal size tested at ~10 cm·s-1, but large mussels had greater clearance rates than small ones. These results were found to be consistent with observations from marine bivalves and indicate that fluid dynamic issues are of importance in freshwater ecosystems, especially those that are shallow and (or) flowing. The trophic dynamics of these ecosystems will be better understood when the effects of fluid dynamics on the organism's ability to filter feed and the local delivery of seston through turbulent mixing are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.