Abstract

Drop size distribution and concentration profile data for hydrocarbon-water mixtures are obtained in a 8.2 cm dia pipe at a range of velocities for a straight horizontal pipe, horizontal and vertical flow after one bend and vertical flow after three bends. The laser image processing technique employed in this project is proven reliable. The maximum drop size ( d 99 ), is more dependent on the number of upstream interactive bends than on the velocity. The drop size distributions follow a Rosin-Rammler power law. The values of Rosin-Rammler exponents, based on this work, are on average 2.1 for all the configurations studied. The concentration profiles as a function of velocity for straight horizontal flow are obtained and show the transition from stratified to adequately dispersed flow at about 2.3 m/s velocity. The concentration profiles for horizontal or vertical flow after one bend show dispersed flow in some cases; however, in other cases swirling makes representative sampling more difficult. Vertical downflow after three interactive bends breaks the droplets to a finer size, and concentration profiles obtained in this location are more uniform than the other configurations studied. Representative sampling can be accomplished in this location even at 0.7–1.0 m/s velocity, in a 8.2 cm pipe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call