Abstract

Purpose Changes in vascular structures as well as vascular endothelial growth factor (VEGF) downregulation have been reported in hypoplastic lungs associated with congenital diaphragmatic hernia. We hypothesized that VEGF may accelerate branching morphogenesis and thus may modulate lung growth in normal and nitrofen-induced pulmonary hypoplastic lungs. Methods A hypoplastic fetal lung model and a normal control lung model were induced by feeding pregnant rats with or without nitrofen, respectively. Fetal lungs harvested on day 13.5 were cultured at ambient oxygen tensions for 72 hours with 0, 25, 50, or 100 ng/mL of exogenous rat VEGF added daily in the serum-free medium. The rates of increase in bud count and airway contour were evaluated. Real-time polymerase chain reaction was carried out to evaluate the expression of surfactant protein C mRNA in the explants at the end of culture. Results Vascular endothelial growth factor accelerated the increase in bud count and airway contour in normal and hypoplastic lung explants compared to controls. Surfactant protein C mRNA expression was significantly increased at 50 ng/mL VEGF compared to controls in both normal and hypoplastic lung explants. Conclusion These data suggest that VEGF plays an important role in lung morphogenesis and may accelerate lung growth in nitrofen-induced hypoplastic lung.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call