Abstract

The effect of vanadium carbide (VC) addition on the sinterability and the microstructure of ultrafine Ti(C, N)-based cermets consolidated through spark plasma sintering (SPS) was systematically investigated using optical microscope, scanning electron microscope (SEM) with X-ray energy dispersive spectrometer (EDS), X-ray diffractometer (XRD) and transmission electron microscope (TEM). Our results reveal that the addition of VC increases the porosity of sintering body and depresses the sinterability of Ti(C, N)-based cermets. It is also found that the VC addition has a significant influence on the microstructure of ultrafine Ti(C, N)-based cermets, which inhibits the dissolution of titanium-containing compounds and the formation of inner rim phase and outer rim phase, thus preventing from grain growth. Owing to the depressed dissolution and precipitation, nitrogen liberation is mitigated, therefore resulting in less amount of graphite phase in the samples. In substance, VC changes the solubility of metallic elements in the binder, which makes more elements of Mo and W to be reserved in the binder and thus greatly decreases the content of titanium dissolved into the binder. The re-building solubility rule determines the development of phases and microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.