Abstract

1 We investigated whether vasoactive intestinal peptide (VIP) and its related peptides, pituitary adenylate cyclase activating peptide (PACAP) and secretin, regulate cholinergic neural mucus secretion in ferret trachea in vitro, using 35SO4 as a mucus marker. We also studied the interaction between VIP and secretin on cholinergic mucus output. 2 VIP (1 and 10 microM) increased secretion, whereas neither PACAP1 - 27, PACAP1 - 38 nor secretin (up to 10 microM) increased mucus output. In contrast, VIP, PACAP1 - 27 and PACAP1 - 38 concentration-dependently inhibited cholinergic neural secretion, with an order of potency of VIP>PACAP 1 - 38>PACAP1 - 27. Neither PACAP1 - 27 nor PACAP1 - 38 altered the secretion induced by acetylcholine (ACh). 3 Secretin increased cholinergic neural secretion with a maximal increase of 190% at 1 microM. This potentiation was blocked by VIP or atropine. Similarly, secretin (1 microM) potentiated VIP (1 microM)-induced mucus output by 160%. Secretin did not alter exogenous ACh-induced secretion. VIP vs secretin competition curves suggested these two peptides were competing reversibly for the same receptor. 4 We conclude that, in ferret trachea in vitro, VIP and PACAPs inhibit cholinergic neural secretion via pre-junctional modulation of cholinergic neurotransmission. VIP and secretin compete for the same receptor, possibly a VIP1 receptor, at which secretin may be a receptor antagonist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.