Abstract

This paper reports on the role of phosphate-based glass (PBG) microspheres and their physicochemical properties including in vitro biological response to human mesenchymal stem cells (hMSCs). Solid and porous microspheres were prepared via a flame spheroidisation process. The Mg content in the PBG formulations explored was reduced from 24 to 2 mol% with a subsequent increase in Ca content. A small quantity of TiO2 (1 mol%) was added to the lower Mg-content glass (2 mol%) to avoid crystallisation. Morphological and physical characterisation of porous microspheres revealed interconnected porosity (up to 76 ± 5 %), average external pore sizes of 55 ± 5 μm with surface areas ranging from 0.38 to 0.43 m2 g−1. Degradation and ion release studies conducted compared the solid (non-porous) and porous microspheres and revealed 1.5 to 2.5 times higher degradation rate for porous microspheres. Also, in vitro bioactivity studies using simulated body fluid (SBF) revealed Ca/P ratios for porous microspheres of all three glass formulations were between 0.75 and 0.92 which were within the range suggested for precipitated amorphous calcium phosphate. Direct cell seeding and indirect cell culture studies (via incubation with microsphere degradation products) revealed hMSCs were able to grow and undergo osteogenic differentiation in vitro, confirming cytocompatibility of the formulations tested. However, the higher Mg content (24 mol%) porous microsphere showed the most potent osteogenic response and is therefore considered as a promising candidate for bone repair applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.