Abstract

The normalized difference vegetation index (NDVI) is an important parameter to reflect relative chlorophyll content and nitrogen level of crops, but NDVI’s ability to estimate nitrogen nutrition is affected by varieties and growth period. The field experiments using several varieties were conducted in the main potato producing areas at the north foot of Yinshan mountain, Inner Mongolia. From early July to mid-august in 2014 to 2016, the canopy spectral index NDVI was measured by using the pocket active crop sensor GreenSeeker during potato critical growth period. The effects of cultivars and growth stages on NDVI estimation of nitrogen concentration in potato plants were compared. The linear correlation between NDVI and plant nitrogen concentration (PNC) was poor in tuber initiation, but increased in process of growth period. The combination of tuber bulking period and starch accumulation period significantly improved the linear modeling effect of NDVI and PNC. Variety combination reduced the sensitivity of NDVI and increased the discreteness of data, which could be offset by NDVI time series normalization (TNDVI), especially the fitting coefficient of determination ( R 2) of TNDVI and PNC increased from 0.13 to 0.47 in the tuber bulking period. The R 2 of linear estimation model of TNDVI for the combination of tuber initiation, tuber bulking and starch accumulation period was 0.76, which was significantly higher than that of NDVI. Plant-expanded varieties had a more linear fitting trend during tuber bulking and starch accumulation. The growth period and potato varieties had significant effects on NDVI estimation of PNC, and growth period had a greater effect. The established TNDVI spectral index overcame the data differentiation and saturation phenomenon during tuber bulking and starch accumulation caused by variety difference, which provides a theoretical basis and method for the application of NDVI in the diagnosis of nitrogen concentration in potato plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.