Abstract

The abdominal aortic aneurysm (AAA) is a degenerating disease for which the end stage is the rupture of the vessel wall. Accurate prediction of the stresses acting on the aneurysm tissue may be used to determine the actual risk of rupture of a specific aneurysm. To accomplish this, a correct constitutive model for the aneurysmal aortic wall and any intraluminal thrombus (ILT) present within it are needed. Our laboratory has previously reported the mechanical properties of ILT. The aim of this work is to investigate the reliability of using population-mean values of ILT constitutive parameters to estimate AAA wall stress distribution. For this, a three-dimensional asymmetric model of an aneurysm including ILT was generated and a parametric study was conducted varying ILT constitutive properties within a physiological range. Results show that the presence of any ILT reduces and redistributes the stresses in the aortic wall markedly. Maximum variation in the peak wall stresses for all the models analyzed was 5%. Adopting a nonhomogeneous ILT did not alter the stress distribution. On the basis of these results, we infer that population mean parameters for ILT material characteristics can be used to reasonably estimate the wall stresses in patient specific aneurysm models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call