Abstract

The aim of this paper is to study the effect on eigenenergies due to variation in channel thickness where the channel comprises of a nanoscale symmetric double triangular quantum well (DTQW) separated by a barrier for double heterostructure double gate InAlAs/InGaAs HEMT. The eigenenergies are calculated analytically by solving one-dimensional (1D) time independent Schrodinger equation in the channel at equilibrium i.e. when no gate voltage is applied. The channel thickness variation implies an independent effect of different barrier width and well widths for the DTQW system. In particular, ground and first excited energy state for various barrier width and well widths are studied and presented in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.