Abstract

This paper computationally investigates the effect of martensitic variant strain accommodation on the formation of microstructural and topological patterning in zirconia. We used the phase-field technique to capture the temporal and spatial evolution of embryonic formation of the monoclinic phase in tetragonal single crystals. The three-dimensional simulations were able to capture the formation of all the possible monoclinic variants. We used the multivariant single embryo as an initial condition to mitigate the lack of nucleation criteria at the mesoscale. Without a priori constraint, the model can select the transformation path and final microstructure. The phase-field model was benchmarked against experimental studies on surface uplift formation in zirconia reported by Deville et al. (Acta Mater 2004;52:5697, Acta Mater 2004;52:5709). The simulations showed the excellent capabilities of the model in predicting the formation of a surface relief induced by the tetragonal to monoclinic martensitic transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call