Abstract

In this work, we consider the problem for a half-space formed of a material with variable thermal conductivity. The problem is within the context of the theory of fractional order theory of thermoelasticity. The boundary plane of the half-space is assumed to be traction free and subjected to a thermal shock that is a function of time. Laplace transform techniques are used. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of thermoelasticity. We also study the effect of the fractional derivative parameter on the behavior of the solution. Numerical results are represented graphically for the temperature, displacement and stress distributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call