Abstract

A constant heat transfer coefficient is often assumed in the computation of the temperature distribution along an extended surface. This assumption permits the use of a well-established closed form analytical solution thus simplifying the mathematical complexity of the conservation energy equation. For certain fin geometries, this assumption will lead to poor prediction of the thermal performance of the extended surface especially for tapered and triangular fins. In this study, a generalized analytical solution was developed that permits the computation of heat loss from an extended surface based on variable heat transfer coefficient, fin geometry, and surface curvature. The influence of these parameters on fin efficiency for typical fins is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.