Abstract

Vancomycin is widely used for treatment of infection caused by methicillin-resistant Staphylococcus aureus (MRSA) leading to an increasing appearance of low-level vancomycin-resistant isolates called heterogeneous vancomycin-intermediate S. aureus (hVISA). The mechanism of vancomycin tolerance in hVISA is still unclear. This study aimed to investigate the fatty acid compositions of S. aureus isolates under the stress environment with vancomycin. The different responses of hVISA and vancomycin-susceptible S. aureus (VSSA) may lead to more understanding the mechanism. The bacterial lipid profiles were tested three times from three extractions of each isolate cultured on tryptic soy agar (TSA) and TSA with vancomycin. Of the 30 MRSA isolates studied, 13, 12, and 5 isolates were VSSA, hVISA, and VISA, respectively. The analysis of bacterial lipid profiles showed that under vancomycin stress, there was a reduction of straight chain fatty acids (SCFAs) in VSSA isolates but an increase in branched chain fatty acids (BCFAs). In contrast, the hVISA group exhibited an increase only in the BCFAs but not in SCFAs. Of interest, vancomycin had no effect on either BCFAs or SCFAs of the VISA cells. This study provided information of bacterial adaptation during stress with vancomycin that may be helpful to overcome the resistant bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.