Abstract

We have produced the (BiPb)2V x Sr2Ca3Cu4−y Ti y O12+δ compounds for x=0.05 and y=0, 0.05, 0.10 and 0.20 by glass-ceramic method. The effects of vanadium adding and Ti doping on the structure have been investigated by electrical resistance, scanning electron micrographs (SEM), XRD patterns and magnetic hysteresis loop measurements. It has been found that the high-T c superconducting phase, (2223), is formed in the samples annealed at 845 °C for 185, with concentration x=y=0.05. However, with increasing Ti doping the (2223) phase transforms into the (2212) phase. We have observed no superconducting properties for x=0.05 and y=0.20 compound. It has completely transformed to semiconductor. In addition, the critical current densities (J c), calculated from the hysteresis loop measurements by using Bean’s critical state model are obtained for the samples in the same doping range. Our data have indicated that J c decreases with increasing temperature and Ti concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.