Abstract
Ash fusibility is closely related to ash slagging, which has significant impact on the clean and efficient utilization of petroleum coke (petcoke). Some mineral elements in petcoke, especially vanadium (V), are considered to be responsible for ash-related slagging during thermal conversion of petcoke. This study investigates the effect of vanadium pentoxide (V2O5) on synthetic petcoke ash fusibility from different perspectives, including V2O5 content variation, temperature rising, and atmosphere change. X-ray diffraction (XRD) and scanning electronic microscopy (SEM) were used to determine the mineral transformation and surface morphology of ash and slag at a high temperature. The ash-melting process was simulated by thermodynamic equilibrium calculations via a multicomponent system. The results show that ash fusion temperatures (AFTs) of synthetic ash samples vary markedly with the V2O5 content increasing. Moreover, AFTs exhibit a significant difference between reducing and oxidizing atmospheres, which c...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.