Abstract

The effects of V on hot deformation properties of low-carbon steel were investigated in the temperature range of 1173 K to 1473 K (900 °C to 1200 °C) and for strain rates from 0.1 to 5 s−1 for compositions with a V content in the range of 0 to 0.125 wt pct. The critical stress and strain for dynamic recrystallization (DRX) initiation were obtained from the stress dependence of the strain hardening rate. The hot deformation properties of V-alloyed steel were studied in function of the temperature-corrected strain rate. The experimental results were used to construct a kinetic model of DRX. V was found to have no influence on the hot deformation properties for V contents less than 0.125 pct, indicating the absence of both solute drag and precipitation effects at low V content. When the V content reached 0.125 wt pct, the activation energy for DRX increased and DRX was suppressed in high strain rate condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call